

《数字信号处理》: 时域中的离散时间信号与系统 Digital Signal Processing: DT Signal and System in Time-domain

Signal Classes and Basic Operations

DSP MOOC Course

Signal Classes

• Finite and Infinite-length

Periodic

• Symmetric

Finite and Infinite Length Sequences

• Length of a sequence is the number of effective elements

- Finite sequence is with finite length
- Infinite sequence: left-sided or right-sided

Periodic Sequence

- Periodic sequence has repetitive appearance
- mathematically, with periodicity $N < \infty$,

$$x[n] = x[n+kN], \forall n, k \in \mathbb{Z}$$

Sinusoid Sequence

• Sinusoid sequence

$$x[n] = \cos \omega n$$

• when $\omega = \pi/3$, x[n] is periodical

Sinusoid Sequence

• Sinusoid sequence

$$x[n] = \cos \omega n$$

- when $\omega = \pi/3$, x[n] is periodical
- when $\omega = 1.1$, x[n] is non-periodical

When Sinusoid Sequence is Periodic?

• Sinusoid Sequence is periodic iff ωN is integer times of 2π

$$x[n] \triangleq \cos(\omega n + \phi) = x[n + Nk], \forall n$$

• the minimum *N* is its periodicity

Symmetric Sequence

Symmetry of Real sequence

Even component:
$$x_e[n] = \frac{1}{2}(x[n] + x[-n])$$

Odd component:
$$x_o[n] = \frac{1}{2}(x[n] - x[-n])$$

For any:
$$x[n] = x_e[n] + x_o[n]$$

Basic Operations

• Addition:

$$y[n] = x_1[n] + x_2[n]$$

• Multiplication (or modulation):

$$y[n] = x_1[n] \cdot x_2[n]$$

• Scaling:

$$y[n] = \alpha x[n]$$

• Time-shift:

$$y[n] = x[n-k]$$

• Time-reversal:

$$y[n] = x[-n]$$

Two different ways to padding ...

Zero-padding

Periodic-padding

Time-shift

Circular Time-shift

$$x[n] \rightarrow y[n] = x[-n]$$

Circular Time-reversal

$$y[n] = x[\langle -n \rangle_N], \quad \langle m \rangle_N = m \text{ modulo } N$$

